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Abstract
The effect of disorder in the energetic heights and in the physical locations of fence barriers
encountered by transmembrane molecules such as proteins and lipids in their motion in cell
membranes is studied theoretically. The investigation takes as its starting point a recent analysis
of a periodic system with constant distances between barriers and constant values of barrier
heights, and employs effective medium theory to treat the disorder. The calculations make
possible, in principle, the extraction of confinement parameters such as mean compartment
sizes and mean intercompartmental transition rates from experimentally reported published
observations. The analysis should be helpful both as an unusual application of effective medium
theory and as an investigation of observed molecular movements in cell membranes.

1. Introduction

The biophysics of cell membranes is an active field of
current research, issues of interest being cell shaping and
movement [1], cell division [2], signal transduction [3], and
molecule trafficking [4]. Observations of the lateral movement
of molecules on the surface of the cell [5–11] have given rise
to the idea that the moving (transmembrane) molecules are
confined within certain regions of the cell membrane. One
possible source of this confinement has been suggested [11]
as being collisions of membrane molecules protruding into the
cytoplasm with the cytoskeleton [12]. The model views the
molecules as moving freely, their motion being hampered as
they traverse adjacent compartments. As the actin filament that
forms the compartment boundary dissociates due to thermal
fluctuations, the moving molecule is envisaged as overcoming
the barrier potential and hopping to the adjacent compartment.

To our knowledge, two theoretical attempts have been
made in the literature to analyze such barrier-hindered motion
of transmembrane molecules. In both of them the molecule is
looked upon as a random walker moving (in a 1D system for
simplicity) with periodically arranged semipermeable barriers.
The more recent of the two attempts borrows the spirit of
the earlier one [13] but avoids some of its shortcomings.
The shortcomings include the appearance of an unfortunately

1 Permanent address: Department of Physics, Missouri University of Science
and Technology, Rolla, Missouri 65409, USA.

unwieldy infinite series of terms which is difficult to handle,
and the unavailability of explicit usable expressions for the
mean square displacement, which is the quantity of direct
comparison to the experiment [11]. It is that second (more
recent) theoretical attempt [14] that we take as our starting
point here and calculate by substantial modifications of that
analysis the consequences of disorder on the effective diffusion
constant and the molecular mean square displacement.

In the model analyzed in [14], we represent the molecule
as a random walker in a 1D infinite chain of sites. The
molecule, whose probability of occupation of the mth site of
the chain at time t is Pm(t), hops via nearest neighbor transfer
rates. The rate is F within a compartment and has a lower
value f at the interface of compartments where there is a
barrier hindering the molecular motion. There are H + 1 sites,
equivalently H nearest neighbor bonds, within a compartment;
for simplicity, H is taken to be even, with the site 0 at the center
of one of the compartments. Specifically, the Master equation

dPm

dt
= F

[
Pm+1 + Pm−1 − 2Pm

]

− (F − f )
∑

r

′ [Pr+1 − Pr
] (

δm,r − δm,r+1
)

(1)

describes that ordered system. The primed summation goes
over sites r = H/2 + (H + 1)l which lie to the left of each
barrier, l taking all integer values.

Explicit expressions have been provided in [14] for
the time dependence of the mean square displacement of
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the molecule and for the effective diffusion constant, the
compartment size H and the transfer rates f and F being
reflected transparently in these calculated quantities. These
are based on equation (2) to appear in section 2 below. The
major element missing from that periodic barrier theory is the
realistic effect of the compartment sizes and the barrier heights
being not equal throughout the system, in other words of H and
f being variable, i.e., disordered, quantities. Our interest in the
present paper is to treat this important disorder effect. The tool
we employ is effective medium theory: a disordered system is
replaced by an ordered system properly structured to represent
the original system. There is an extensive literature on the
general subject of effective medium theory [15–19], and there
is a long history of its application to problems involving normal
and anomalous transport in disordered lattices. Recently,
the approach has been applied with success to the study of
transport in more complex environments, including random
graphs [20] and small world networks [21–23]. Some of those
developments are naturally applicable to the present problem
of molecular motion in cell membranes as we shall see below.

The motivation to extend our previous theory [14] to
treat disordered f and H stems from the experimentally
known fact that the barrier locations for the transmembrane
molecular motion in the cellular membrane occur at positions
that are by no means regular; the consequent variations are
substantial within a system, about one order of magnitude, the
compartment sizes sometimes being quoted as lying between
30 and 240 nm [11]. The precise situation in which the moving
molecules find themselves at the barriers also varies, the result
being a variation in the effective transfer rate.

We construct our effective medium theory considerations
for the present problem in three parts. First, in section 2, we
take the compartment sizes to be all equal as in [13] or [14] but
allow the barrier heights, consequently the intercompartment
rates of molecular motion f , to be taken from each of several
specific distribution functions with given mean, variance, and
nature. In section 3, we first take the intercompartment rates
to be constant throughout, but allow the compartment sizes H
to vary, and then allow both H and f to be random variables.
Figure 1 illustrates the three respective cases as (a), (b) and (c).

In each case we calculate physical observables typified by
the effective diffusion constant. Whereas the f distributions
we consider in section 2 are arbitrary, the H -distributions we
consider in section 1 are not arbitrary but determined by the
specific f distributions we take to generate them. This allows
us to make direct use of the analysis (in particular, the form
of the transport propagators) developed in [14]. Fully arbitrary
distributions for compartment size will be studied in a future
publication. A graphical comparison of the predictions of
our effective medium theory with the results of a numerical
solution of the disordered problem, and concluding remarks are
presented in section 4. A brief analysis of the memory function
that emerges from the effective medium theory is also given in
the discussion in section 2.

2. Disorder in barrier heights

The system we investigate in the present paper is formally
described by equation (1) as in [14] but with the understanding

Figure 1. Schematic illustration of the different types of barrier
disorder considered. In (a), the barriers are periodically-spaced, but
have random energetic heights. In (b), the barrier heights are
uniform, but the distances between barriers is random. In (c), both
the barrier spacing and the barrier heights are independent random
variables.

that f and the primed locations r are disordered quantities. In
the analysis of [14], the solution of the ordered equation (1) for
arbitrary initial probabilities Pn(0) is expressed as

Pm(t) =
∑

n

χm,n(t)Pn(0)

where the transport propagator (which ‘propagates’ the
solution from site n to site m) is given in the Laplace domain
(ε being the Laplace variable and tildes denoting Laplace
transforms) by

χ̃m,n = �̃m−n − F − f

1 + (F − f )μ̃

×
∑

r

′(�̃r−n+1 − �̃r−n)(�̃m−r − �̃m−r−1). (2)

This is a slightly rewritten, but completely equivalent, version
of equation (2) of [14].

Here, the first term on the right-hand side is the Laplace
transform of the propagator �m−n(t) of the system without
barriers (F = f ), and is characterized by a single index as
a result of complete translational invariance at the site level.
The second term describes the effect of the barriers between
compartments. It is proportional to the difference F − f and is
characterized by a property of the barrier-less system, namely,
products of the propagator differences in the Laplace domain,
summed over barrier locations, and is also characterized by
μ(t), an appropriate summed combination of �(t)’s (see [14]),
whose Laplace transform is given by

μ̃(ε) = 1

F

[
tanh (ξ/2)

tanh (ξ (H + 1) /2)
− 1

]
,

with ξ = 2 sinh−1(
√

ε/4F). In obtaining this result, one uses
the known form of the Laplace transforms of the propagators
for the system without barriers,

�̃l = e−ξ |l|

2F sinh ξ
. (3)
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2.1. General development

Our goal in this section is to analyze the generalization
of the system represented by equation (2) when the
intercompartmental transition rates f vary in magnitude
throughout the chain and are picked from a distribution
function ρ( f ). The equation obeyed by the probabilities of
occupation is

dPm

dt
= F

[
Pm+1 + Pm−1 − 2Pm

]

−
∑

r

′(F − fr )
[
Pr+1 − Pr

] (
δm,r − δm,r+1

)
. (4)

An exact analytic solution of equation (4) is practically
impossible for large systems because the fr ’s vary in a
disordered fashion. Therefore, in the spirit of effective medium
theory [15–19], we replace the actual disordered system with
its many f ’s by an effective medium system characterized
by a single quantity (memory function) F(t) which is time-
dependent and to be determined from the distribution ρ( f ).
The effective medium system is identical to the periodic system
represented by equation (2) except that f is replaced by F̃(ε).
This replacement means that the occupation probabilities in the
effective medium system obey

dPm(t)

dt
= F

[
Pm+1(t) + Pm−1(t) − 2Pm(t)

]

−
∫ t

0
dt ′ [Fδ(t − t ′) − F(t − t ′)

]

×
∑

r

′ [Pr+1(t
′) − Pr (t

′)
]
(δm,r − δm,r+1). (5)

Equation (5) differs from the ordered counterpart (1) in just
one aspect: the appearance of the effective memory F(t) in
place of the constant f . This memory, and the consequent
convolution form for the equation, is an essential and well-
known feature of the effective medium treatment. For long
time considerations, one replaces F(t) by its Markoffian
approximation δ(t)

∫ ∞
0 F(t ′) dt ′. Then the formal identity to

equation (1) is exact.
To determine F , we follow the effective medium

prescription [15–19] of considering one defect in the otherwise
periodic system (5) formed by replacing F by an f drawn from
its probability distribution ρ( f ), solving the defect problem
exactly in the Laplace domain, averaging the solution over the
f ’s in the distribution, i.e., carrying out an ensemble average
of the solutions, and then requiring that the ensemble averaged
solution is equal to the solution of the system without the
defect.

The propagator for the effective medium system (5) is, in
the Laplace domain,

χ̃m,n = �̃m−n − F − F̃
1 + (F − F̃)μ̃

×
∑

r

′(�̃r−n+1 − �̃r−n)(�̃m−r − �̃m−r−1) (6)

which is precisely equation (2) with the replacement of f by F̃ .
For the defective system made by introducing the rate f drawn
from its probability distribution and placing it between the sites
s and s + 1, the propagator is the sum of the propagator given

above and an additional term so that the defective propagator
is

χ̃m,n +
[

( f − F̃)

1 + ( f − F̃)β̃

]
(χ̃m,s − χ̃m,s+1)(χ̃s+1,n − χ̃s,n)

where, for notational convenience we have introduced the
abbreviation

β̃ = −χ̃s+1,s + χ̃s+1,s+1 + χ̃s,s − χ̃s,s+1.

The second term in the defective propagator describes the
modification by the barrier lying between the sites s and s + 1.
We get a different solution for every ensemble member, the
difference being in the value of f . We require the self-
consistency condition that the ensemble average over the f ’s
give us simply χ̃m,n . This must be true whatever the n in the
propagator or whichever barrier s characterizes. Therefore,
the ensemble average of the factor in the square brackets in
the propagator expression above must vanish. This provides a
prescription for obtaining the effective quantity F̃ through the
solution of the implicit equation

∫
d fρ( f )

[
f − F̃

1 + ( f − F̃)β̃

]
= 0. (7)

The chain details are reflected in β̃ and the randomness of the
f ’s in ρ. There is no f -dependence in F̃ and β̃, although β̃ is
a function of ε as well as of F̃(ε). Because of the independent
dependence of β̃ on ε, the solution of equation (7) yields
an explicit ε-dependence of the effective quantity F̃(ε) that
we seek. Different probability distributions result in different
expressions for the effective medium quantity F̃ .

For long times, the Markoffian approximation of the
memory function is appropriate. This involves taking the ε →
0 limit of the Laplace transforms in the expressions above. We
first see from equation (6) that, in this limit,

β̃ = −χ̃s+1,s + χ̃s+1,s+1 + χ̃s,s − χ̃s,s+1 → 1

F̃(0)
.

This remarkable simplification allows us to conclude that,
in the long time approximation, the effective value of the
intercompartmental rate is given trivially as the reciprocal
of the ensemble average of the reciprocals of individual
intercompartmental rates:

1

feff
= 1

F̃(0)
=

∫
d f

ρ( f )

f
. (8)

Application of effective medium theory has thus reduced
the disordered problem of interest in the present paper into
the ordered effective problem which was completely analyzed
in [14]. Combining that analysis with equation (8), we find
that the overall effective transfer rate for the diffusion of
the molecule (taking into account both the existence of the
compartments of size H and the existence of disorder in the
rates f ) is given by

Feff =
(

H+1
H

)

[
1
F + 1

H

∫
d f ρ( f )

f

] . (9)
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For large H (for instance if H � 1), equation (9)
simply states that the effective overall transfer rate is the
harmonic mean of the intracompartment rate F and the
effective intercompartmental rate feff reduced by the size of
the compartments.

2.2. Specific cases

Equation (9) is one of our main results for the case in which
disorder appears only in the values of the intercompartmental
rates: it allows us to translate the randomness of the
intercompartmental rates as expressed in the form of
the distribution ρ( f ) directly into the effective diffusion
parameters of the system. We will now consider several
different cases of ρ( f ) for purposes of illustration.

Two trivially expected results emerge in a straightforward
fashion: if ρ( f ) has a non-zero value at f = 0 so that there is a
non-zero probability of having disconnected sites, the effective
hopping rate at long times must vanish. This is clear from
equation (9) since ρ( f ) can be written as ρ( f ) = δ( f )+ R( f )

where R( f ) is some distribution of f obeyed for all f except
for f = 0. The integral in the denominator of equation (9)
diverges, giving Feff = 0. Similarly, if there is only a single
value of the intercompartmental rate f , namely g: ρ( f ) =
δ( f −g), equation (9) reduces to the corresponding expression
in the analysis of the ordered system treated in [14].

For the case when there are two values of the
intercompartmental rate appearing with different weights:

ρ( f ) = A1δ( f − f1) + A2δ( f − f2),

where obviously the normalization is A1 + A2 = 1, the overall
effective rate is given by

Feff = H + 1
H
F + A2 f1+A1 f2

f1 f2

. (10)

Note that, if either f1 or f2 is zero, Feff vanishes as we have
stated above.

Finally, we will exhibit the continuum limit of our results,
selecting three specific distributions for the intercompartmental
rates. We display the continuum limit expressions because,
particularly for the problem of molecular motion in cell
membranes, they are more directly applicable than their more
general discrete counterparts. The continuum limit means that
the lattice constant a → 0, transforming hops among discrete
sites on a chain to flow on a continuous line. As is well known,
and explicitly commented on elsewhere, (see, e.g., [14, 24]), as
a → 0, it is necessary that f, H → ∞ as 1/a but F → ∞
as 1/a2. With this appropriate limiting behavior, the overall
effective diffusion constant is given as

lim
a→0

Feffa
2 = Deff = D

1 + D
L

∫
dD f

ρ(D f )
D f

D f = lim
a→0

f a

(11)

where D is the continuum limit of Fa2, D f is the continuum
limit of f a, and L, the continuum limit of (H +1)a, is the size

of the compartment. Factors such as (H + 1)/H collapse into
1. The ratio P = D f /D is what is sometimes called [13] the
permeability.

To illustrate the effect of the form of the distribution
functions, we now consider several explicit realizations of
ρ(D f ). We evaluate equation (11) for the three respective
cases of a constant distribution in an interval, a biased
distribution that peaks at a value related to the spread of the
distribution, and a biased distribution that is characterized by
two independent parameters that, in combination, describe
the peak value and the distribution spread. We use the
normalization

∫
ρ(D f ) dD f = 1.

2.2.1. Uniform distribution. If ρ(D f ) is a non-zero constant
in an interval of values of D f , i.e., for l < D f < u, and
vanishes otherwise, then we have from equation (11)

Deff

D
=

[
1 + D ln(u/ l)

L(u − l)

]−1

. (12)

2.2.2. Rayleigh distribution. If ρ(D f ) is a biased Gaussian,
called sometimes a Rayleigh distribution:

ρ(D f ) = D f e−D2
f /2σ 2

σ 2
, (13)

where the mean is σ
√

π/2, and the variance σ 2( 4−π
2 ) is

proportional to the square of the mean, we have

Deff

D
=

[
1 + D

√
π/2

Lσ

]−1

. (14)

2.2.3. Rice distribution. To have two independently
controllable parameters to describe the peak value and the
distribution spread, we consider what is called the Rice
distribution:

ρ(D f ) = D f

σ 2
e− (D2

f +v2)

2σ2 I0

(
D f

v

σ 2

)
(15)

the two parameters being σ and v. The mean is
σ
√

π/2L1/2(−v2/2σ 2), and the variance is 2σ 2 + v2 −
πσ 2/2L2

1/2(−v2/2σ 2). Here, L1/2(x) = ex/2[(1 −
x)I0(−x/2) − x I1(−x/2)] is the Laguerre polynomial of
fractional order and Im(x) are modified Bessel functions of the
first kind. We find

Deff

D
=

[
1 + D

√
π/2

Lσ
e−v2/4σ 2

I0(v
2/4σ 2)

]−1

. (16)

The distributions are plotted in figure 2. Note that the Rice
distribution appears highly symmetric around its peak value
although, like the Rayleigh distribution, it has the value 0 at
the value D f = 0.

Notice that, in every case, the expression for the effective
diffusion constant depends in essentially the same manner on
the ratio of the system (barrier-less) diffusion constant D to
the product of the compartment length and a characteristic
D f value. Except for numerical factors, the latter product is
(u − l)/ ln(u/ l) for the uniform distribution, σ/

√
π/2 for the

Rayleigh distribution, and σ/[√π/2 e−v2/4σ 2
I0(v

2/4σ 2)] for
the Rice distribution.
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Figure 2. Plots of Rayleigh(solid) and Rice(dashed) distributions for
various parameter values. For the Rice distribution, σ = 0.05 in all
cases. Distributions are normalized such that

∫ ∞
0 dx ρ(x) = 1. Here,

x represents D f .

2.3. Determination of the memory function

The full exploitation of the convolution in equation (5) and
of the consequent memory effects in the motion has seldom
been carried out in the literature. The few exceptions are
in the context of percolative systems in which the long time
diffusion constant vanishes at the percolation point [16], of
the power law tail analysis given by one of the present
authors [18], and prescriptions provided by another of the
present authors [19] for the determination of memory functions
for stress distribution in granular compacts. In this subsection
we briefly show how to explicitly calculate the memory
function F in the Laplace domain following a prescription
similar to that given in the last of the above references [19].
Equations (9) and (10) of [19] should be compared to (7)
and (8) above in the present analysis. We recall that the
propagators �l(t) for the original problem (nearest neighbor
rates F and no barriers) are Il(2Ft) e−2Ft and therefore their
Laplace transforms can be written in terms of hyperbolic
functions as given in equation (3). This allows us to write

β̃ = 2(�̃1 − �̃0)

− g − F̃
F2(1 + (g − F̃)μ̃)

(

1 − 2ε�̃0 + ε2
∑

r

�̃2
s−r

)

, (17)

∑

r

′�̃2
s−r = coth ξ(H + 1)

4F2 sinh2 ξ
. (18)

In the light of this expression for β̃ , equation (7) yields:

1

�
=

∫
d f

ρ( f )

f + (� − F̃)
, (19)

where

� = − (1 + μ̃F) − F̃μ̃

ζ + θ((1 + μ̃F) − F̃μ̃)
. (20)

In order to write the expressions in a compact way, we have
defined:

θ = coth(ξ/2) − 1

F
− ζ,

ζ = 1

μ̃F2
(1 − 2 coth(ξ/2) + coth2(ξ/2) coth ξ(H + 1)).

(21)

Figure 3. Evaluation of the memory function produced by our
effective medium theory. Plotted is the ε-dependence of the
normalized F̃ , taking ε real for simplicity in display and normalizing
it to F̃(0). Shown is the case when the distribution of
intercompartmental rates f is a sum of two weighted delta-functions:
the rates are either f1 or f2. Our evaluation shows that F̃ equals the
(weighted) arithmetic mean (WAM) of the two rates for large ε and
their (weighted) harmonic mean (WHM) for small ε, the latter
representing the effective long time intercompartmental rate, as
expected. The parameter values chosen for this plot are: f1 = 0.1F ,
f2 = 0.2F , H = 10, α = 0.5.

We can now solve for F̃ for a given ρ( f ) by using
equation (19) as outlined for a different case in [19]. As
a special case of the distribution we use the case when the
intercompartmental rate takes on one of two values with
different weights:

ρ( f ) = αδ( f − f1) + (1 − α)δ( f − f2). (22)

Then equation (19) gives us, for F̃ ,

F̃3 + bF̃2 + cF̃ + d = 0, (23)

where
b = −( f1 + f2 − 1/θ) − η/θμ̃,

c = f1 f2 − [μ̃( f2 + α( f1 − f2)) + (1 + μ̃F)

− η( f1 + f2)]/θμ̃,

d = [η f1 f2 − ( f2 + α( f1 − f2))(1 + μ̃F)]/θμ̃,

η = (ζ + θ(1 + μ̃F)).

(24)

The numerical solution of the cubic equation yields the
memory function explicitly in the Laplace domain. It is plotted
in figure 3. We see that, at ε = 0, F̃ tends to the value of
its Markoffian approximation which is the weighted harmonic
mean of the two rates f1 and f2. We also see that it tends to
the weighted arithmetic mean of the two rates as ε → ∞. The
intermediate behavior corresponds to intermediate times. We
defer to a forthcoming publication [25] a detailed application
of these and related memory developments.

3. Disorder in barrier placement and in
intercompartmental rates

We now turn our attention to a generalization of the problem
which involves disorder in the placement of the barriers rather

5
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than in their heights. We first take the latter to be the same
throughout the chain.

3.1. Disorder in barrier placement only

Let us consider the following distribution for barrier heights:

ρ( f ) = αδ( f − g) + (1 − α)δ( f − F). (25)

Here, the intercompartmental transition rate is either g or F
with probabilities α and 1 − α respectively. When the barrier
heights are distributed according to equation (25), it is as if,
starting with exactly the same system as in [14] (periodic
barriers of the same height g), we replace the barriers randomly
and independently with probability 1 − α with links that have
transfer rates F , which is the intracompartmental transfer rate.
Therefore, the barriers between some of the compartments are
now removed which means that some of the compartments
are merged. The compartment sizes always are in multiples
of (H + 1)a (the smallest compartment size) where a is the
lattice constant. In this system, the compartment size, which is
the distance between the consecutive barriers, will be a random
variable whose distribution will depend on the parameter α.

The distribution of distance between two consecutive
barriers is easy to calculate. Consider N points in a discreet
linear space. To each point we will assign a number si which
is either 1 or 0. We will think of the points in this space as
the intercompartmental links in our original problem. In this
picture, a point i with si = 1 will represent a link with transfer
rate F and a point with si = 0 will stand for a link with transfer
rate g, which we have been calling a barrier. Then according
to equation (25), 0’s will occur with probability α and 1’s with
1 − α. If we let σ be the number of elements in a contiguous
sequence of 1’s, the distance between two consecutive barriers
is simply given by (σ + 1)(H + 1)a. Note that σ = 0
corresponds to the case in which the distance between two
consecutive barriers is the minimum value (H +1)a. When all
these arguments are taken into account, the number distribution
of σ is found to be given by

N (σ ) = δσ,0

N−1∑

j=1

(1 − s j )(1 − s j+1)

+ (1 − δσ,0)

N−σ−1∑

j=1

(1 − s j )

(
σ−1∏

i=0

s j+i+1

)

(1 − s j+σ+1),

(26)

where N (σ ) is the number distribution of σ in a particular
realization of a 1D chain as described in the beginning of
this section. The first and second terms in equation (26)
count the occurrence of compartments of sizes (H + 1)a and
(σ + 1)(H + 1)a respectively. As si ’s are independently
distributed, we can write:

〈si 〉 = 1 − α, (27)

where the angular brackets mean an ensemble average over all
realizations of 1D chains with intercompartmental transition
rates sampled from equation (25). Then the ensemble averaged
number distribution is given by

〈N (σ )〉 = (N − σ − 1)α2(1 − α)σ , (28)

Figure 4. The ensemble averaged probability distribution P(σ, α), in
the limit as N → ∞, as a function of σ (left) and as a function of its
parameter α (right). The continuous lines in the plots correspond to
our formula in equation (31).

and therefore the probability distribution for σ is

〈P(σ )〉 = 〈N (σ )〉
∑N−1

σ=0 〈N (σ )〉 . (29)

As we are interested in particularly in infinite chains, we take
the limit N → ∞. The probability distribution for σ becomes

〈PN→∞(σ )〉 = α(1 − α)σ . (30)

Then the ensemble averaged compartment size distribution
would be given by

P(σ, α) = α(1 − α)
q

H+1 −1, (31)

where q = (σ + 1)(H + 1) is the dimensionless compartment
size. The mean and variance of P(σ, α) are given by

q = H + 1

α
, (32)

(�q)2 = (q2) − (q)
2 = (H + 1)2 1 − α

α2
. (33)

In figure 4 we display this distribution: plotted against σ

for three values of α on the left side and against α for three
values of σ , as shown. The left plot shows that, in all cases the
distribution is peaked at vanishing σ . The right plot shows that,
with the exception of the case α = 0, the distribution vanishes
for both extremes α = 0 and α = 1, but rises and drops for
intermediate values.

The general theory we have developed in section 2 now
provides us, in light of the distribution we have obtained above,
with a prescription to calculate the effective long time transfer
rate Feff in terms of the mean (dimensionless) compartment
size q and the rates F and f :

Feff = q

1/ f + (q − 1)/F
. (34)

In the continuum limit, obtained by multiplying Feff by
a2 and letting a tend to zero appropriately, we note that H
also tends to infinity, producing the limit of qa as the mean
compartment size Q which has dimensions of length. We get

Deff

D
=

[
1 + D

QD f

]−1

. (35)
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3.2. Disorder also in the intercompartmental rates

We now give expressions for the effective hopping rate and
diffusion constant when both the heights and places of the
barriers are random.

Consider

ρ( f ) = (1 − α)δ( f − F) + η( f, α), (36)

where η( f, α) is a distribution normalized to α, with the
understanding that η(0, α) = 0. According to equation (36),
and the development in section 3.1, a fraction α of the
intercompartmental links are barriers whose heights are
sampled from the distribution η( f, α) and the rest are just
intracompartmental links with transition rates F that in turn
give rise to the variability in compartment sizes. Note that
the statistics of different compartment size distributions do not
change even if the barrier heights are not the same. Therefore
the compartment size distribution can still be obtained from
equation (30). Thus we get

Feff =
H+1

H
1
F

(
H+1−α

H

) + 1
H

∫
d f η( f,α)

f

, (37)

and the effective diffusion constant in the continuum limit
becomes

Deff

D
=

[
1 + D

L

∫
dD f

η(D f , α)

D f

]−1

. (38)

Here,
∫ ∞

0 dx η(x, α) = α, x being f and D f in the two
respective equations above. Note that when α = 0, so that
there are no barriers, η(x, 0) vanishes identically as it is a
positive function, and the results reduce to Feff = F and
Deff = D.

4. Conclusion

This paper has a twin purpose, an investigation of the effect
of disorder on molecular motion in cell membranes, and the
development of effective medium theory approaches in new
practical directions. We have discussed the first context briefly
in section 1. Single fluorescent video imaging [26, 27] and
single particle tracking [28, 29] are the two most common
ways of observing laterally moving molecules on live cell
membranes. The latter can provide information about motion
at very short times such as confinement effects. Our theory
is positioned to address the results of both measurement
techniques. Our results allow us to describe the effect of
disorder both in the location and the size of fence barriers,
and the motion of both proteins and lipids in cell membranes.
These barrier parameter variations arise from the dynamics
of the cytoskeleton and of the transmembrane molecules.
Observational determination of such variations should be
possible through the use of modern methods involving optical
tweezers [30] and electron tomography techniques [31] that
enable the imaging of the actin filaments and the cell surface.
These experimental data can be used in conjunction with the
calculations we have presented to extract information about

compartment sizes and their spatial fluctuations, as well as
about the energetic barrier magnitudes and their fluctuations.
As more detail becomes available about the membrane
dynamics from experiment, it will be straightforward to give
further quantitative shape to the theory we have provided here.

The second context of our study lies in presenting effective
medium calculations in systems which are partly ordered and
partly disordered. This line of research has been recently
taken by two of the present authors in their study of transport
on small world networks, particularly of the Neumann–Watts
kind [21–23]. In those systems standard rings (finite chains
with periodic boundary conditions) with nearest neighbor
hopping rates for the random walker form the ordered part
and additional small world connections make up the disordered
part. Effective medium theories developed for those systems
envisage the effective system as the rings with additional
periodically placed connections. Here, for the cell membrane
problem, the standard chain forms the ordered part, and the
disordered barriers (in magnitude and location) the disordered
part. Our effective medium theory here takes the effective
system as the chain with periodically placed barriers of
constant magnitude.

Our starting point in this paper has been equation (4)
which is impossible to solve in practice because of the enor-
mous number of irregularities. Effective medium considera-
tions have yielded as a general result the prescription (7) to
calculate F̃ appearing in the effective medium equation (5) as
a function of the Laplace variable ε, starting from known ran-
dom distributions. We have illustrated the procedure to carry
out this prescription for a simple case which results in a cu-
bic equation for F̃ , namely (23). Its solution is in figure 3 and
shows physically expected limiting results. Long time approx-
imations to the memory F(t) are appropriate if the interest lies
in long time description of the transport of the random walker
(e.g., of the molecules in the cell membranes.) In such a case
we have developed a quite general result, equation (11), which
transparently connects the distribution of intercompartmental
rates ρ( f ) to the effective diffusion constant. We have illus-
trated these results for several specific cases of the distribution
ρ( f ) including a Rayleigh and a Rice distribution, and also
employed the general development to shed light on effects of
disorder in barrier placement as well as in intercompartmental
rates.

In concluding, we display a comparison of the results
of our effective medium theory with numerical solutions of
the disordered Master equation for various realizations of f -
disorder, with H held constant. We see in figure 5 that
the agreement is excellent at sufficiently long times. We
considered several different kinds of distribution and found
the results to be essentially identical. The results displayed in
figure 5 correspond to three Rice distributions with different
parameters, (v = 0.1, s = 0.02), (v = 0.2, s = 0.06)
and (v = 0.4, s = 0.02), the probability distribution
functions being shown in the inset. The same three kinds
of curve, dashed, solid and dash–dotted curves respectively,
used to display the distributions are used correspondingly in
the main figure to show the results of the numerical solution
of equation (4) followed by performing an ensemble average.
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Figure 5. Excellent agreement for sufficiently long times of our
effective medium theory with numerically obtained solutions of the
Master equation with disordered barrier heights typified by three
Rice distributions with different parameters, (v = 0.1, s = 0.02),
(v = 0.2, s = 0.06) and (v = 0.4, s = 0.02), respectively denoted by
dashed, solid and dash–dotted curves in both the main figure which
depicts the instantaneous transfer rate F(t) normalized to F , and in
the inset which shows the corresponding probability distributions ρ.
Long time predictions (effective transfer rates) of our effective
medium theory, shown by horizontal dotted lines, are reached
asymptotically in each case. See text for other details including the
observed dips.

The specific plots are of the instantaneous transfer rate F(t),
normalized to the barrier-less system transfer rate F . This
F(t) is one half the time derivative of the (dimensionless)
mean square displacement, and should not be confused with
the memory F(t). Two features are visible: dips below
the eventual asymptotic values, and the coincidence of the
asymptotic values with horizontal dotted lines that represent
our effective medium theory. The dips arise from the fact that
the random walker is assumed to start initially at the center
of one of the compartments: repeated encounters with walls
when the effective transfer rate drops are responsible for the
dips. A detailed discussion of the dips is given in [14]. The
asymptotic coincidence of the numerical solutions with the
effective medium theory provides graphical validation of the
latter.
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